
Database Setup
4.1    Blank Database Import

A blank database of the IMIS is maintained in the GitHub organization under the repository
deployment_documentation. This blank database is imported into PostgreSQL through pgAdmin.
The database server (PostgrSQL) must be connected through pgAdmin initially: For the steps refer
to Section Connect to db through pgadmin.

Figure 5 Select Restore and choose the provided database to restore

Step 1 :    Download the blank database from the GitHub repository. 
Step 2 :    Open pgAdmin and connect to your PostgreSQL server.
Step 3 :    Navigate to your server's "Databases" folder.
Step 4 :    Right-click on the target database where you want to import the schema and data, and
then select "Restore..." from the context menu.
Step 5 :    Under the "Format" section, choose "Custom or Tar" from the dropdown menu. This
format allows you to import both schema and data together. Browse the file by clicking on the "..."
button in the "Filename" field. 
Step 6 :    Select the correct format of the file you are restoring, dump or backup.
Step 7 :    Go to “Data Options” tab, under the "Do not save" section, check the box labeled
"Owner".
Step 8 :    Click "Restore”.
Step 9 :    If prompted, enter the password for the database superuser.
Step 10 :    Update the .env file in the web-application server with the corresponding values of the
database, such as database name, credentials, etc.  

The restoration process will start, and pgAdmin will import the schema and data into the target
database. The time it takes to complete depends on the size of the database dump. Explore the



tables and other database objects to verify that the schema and data have been imported.
Note: When restoring a PostgreSQL database, permission issues could arise if the original owner
specified in the backup does not exist on the target system. To overcome this issue, Exclude
Ownership Restoration as mentioned in Error! Reference source not found.. This corresponds to the
`--no-owner` flag, telling pgAdmin not to set ownership of the objects to the original user from the
backup. 

4.2    Configure Environment Variables (.env)

Configure the environment settings for the IMIS project, which define essential application and
database connection parameters.
In the IMIS project directory, locate the .env.example file. Copy this file and rename the copy to
.env. This file will hold environment-specific settings for your local IMIS deployment.
Open the .env file in a text editor and set the following configurations for the PostgreSQL database
connection and set the appropriate paths for the different provided variables as well:

 

DB_CONNECTION=pgsql # Sets PostgreSQL as the database driver
DB_HOST=127.0.0.1 # Sets PostgreSQL as the database driver
DB_PORT=5433 # Defines the port PostgreSQL is listening on (set to 5433 as configured

earlier)
DB_DATABASE=imis_base # Replace 'imis_base' with your actual database name
DB_USERNAME=your_username # Replace with your PostgreSQL username
DB_PASSWORD=your_password # Replace with your PostgreSQL password

4.3    Database Seeder

The default look-up values for various dropdowns and default roles, permissions and user access
can be setup through the seeder. Run the database seeder command:

php artisan db:seed

4.4    Importing Data into IMIS

The blank database provided does not contain any data apart from the look up values updated
through the seeder. The initial dataset obtained from the survey must be cleaned and processed
into individual SQL dump files, that follows the naming standards and data types as mentioned in
the data dictionary. The table names, field names and data types must exactly match the data



dictionary/ database.

4.4.1    Data Importing Sequence

As the IMIS is developed based on a relational database, the import sequence of the datasets must
be followed strictly to ensure that there are no issues during the importing process. The import
sequence is provided below:

 

S.N.  Schema Name Table Name Type

1 layer_info citypolys spatial

2 layer_info landuses spatial

3 layer_info waterbodys spatial

4 layer_info wardboundary spatial

5 layer_info grids spatial

6 layer_info wards spatial

7 layer_info ward_overlay spatial

8 layer_info sanitation_system spatial

9 utility_info roads spatial

10 utility_info water_supplys spatial

11 fsm treatment_plants spatial

12 utility_info sewers spatial

13 utility_info drains spatial

14 layer_info places spatial

15 layer_info low_income_communities spatial

16 building_info buildings Spatial

17 fsm containments Spatial

18 building_info build_contains Non-Spatial

19 building_info owners Non-Spatial

20 fsm toilets Spatial

21 fsm build_toilets Non-Spatial

 

4.4.2    Importing Spatial Data 



To import any table, follow the data dictionary and prepare data layers in QGIS with proper column
name then import data into PostgreSQL database. 

Step 1 :    Data Preparation: Create PostgreSQL SQL Dump file (repeat the same process for all the
spatial data), ensure the table name, field names and data formats matches exactly with the data
dictionary/database.

a.    Select the ‘Spatial data Layer’ with all the required attributes (following the data dictionary)
b.    Right click and go to ‘Export’ option and select ‘Save Feature As…’

Step 2 :    Select the format: ‘PostgreSQL SQL Dump’

 



a.    Select File Location and Give filename same as Table Name.
Example: for table roads:

b.    In Layer Options:
i.    CREATE_SCHEMA: NO
ii.    CREATE_TABLE: NO
iii.    DROP_TABLE: NO
iv.    GEOMETRY_TYPE: GEOM
v.    SCHEMA: SCHEMA_NAME
vi.    SRID: 4326



c.    In Layer Options: For Table ‘roads’



Step 3 :    Import into database via Pg-Admin.
a.    Open Pg-Admin.
b.    Open/Connect to Database
c.    Right click and open the Query Tool.
d.    Click on ‘Open file’ icon    and select the exported SQL Dump File.
e.    Click on ‘Run’ Button and execute the commands. 
f.    Check if all the data has been imported or not.

4.4.3    Importing Non-Spatial / CSV Data 
Step 1 :     Launch pgAdmin and connect to your PostgreSQL database server.
Step 2 :     Right-click on the table where you want to import the CSV data.
Step 3 :     Select ‘Import Data’ from the right-click menu. 
Step 4 :     In Filename option, navigate to your CSV file's location and select the file.
Step 5 :     Choose CSV from the format options.
Step 6 :     If the CSV file has column headers in the first row, check the Header box.
Step 7 :     Click OK to start the import process.

4.5    Build and Triggers Functions Setup
Functions and Triggers are used in IMIS to automate and streamline database operations that
perform specific tasks within the database, such as updating counts in real-time, supporting map
tools, and import modules. Triggers are used in IMIS to automatically execute predefined actions in
the database, such as updating counts maintaining data consistency, whenever data insertions
occur, without manual intervention. This setup improves overall performance by executing



predefined actions efficiently, making the system responsive.

Run the following commands to build all the necessary functions and triggers required for the
system to function correctly:

Creates Functions and triggers to update count for grids &wards and summary chart

php artisan buildfunction:updatecount

Creates or replace (Or Delete and create) maptool queries if not exists functions

php artisan buildfunction:maptool

Creates Functions to create table when new data is imported for tax payment, watersupply and
swmpayment:

php artisan buildfunction:taxphp artisan buildfunction:watersupply
php artisan buildfunction:swmpayment

Create quarters data for FSM KPI dashboards. 

php artisan kpi:cron

When importing data in bulk or during the initial setup, it’s recommended to disable the trigger,
update the count manually, and then re-enable the trigger to ensure accurate data processing
without unnecessary overhead during the import process.

4.6    Summary Data Count Update
During the initial setup or after importing data, you need to update the count in the summary
tables manually, but once the system is up and running, a trigger will automatically update the
count each time new data is added.

To update grids & wards count when buildings have changes

php artisan updatecount:buildings



To update grids & wards count when fsm.containments has changes

php artisan updatecount:containments

To update grids & wards count when utility_info.roads has changes

php artisan updatecount:roadlines

To update grids & wards count when fsm.applications has changes

php artisan updatecount:applications

 

Revision #1
Created 3 March 2025 03:50:46 by Bookstack Editor
Updated 3 March 2025 03:55:24 by Bookstack Editor


